Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ting He, ${ }^{\mathrm{a}, \mathrm{b}} \mathrm{Yi} \mathrm{Z}$ Zhi Li ${ }^{\mathrm{a}}$ and Hong-Wen Hu ${ }^{\text {a* }}$
${ }^{\text {a }}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.058$
$w R$ factor $=0.133$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Amino-5-(4-chlorophenoxymethyl)-2-(2-cyano-ethyl)-2H-1,2,4-triazole-3(4H)-thione monohydrate

In the title molecule, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{OS} \cdot \mathrm{H}_{2} \mathrm{O}$, all the bond lengths and angles have normal values. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, with $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions, link the molecules into a three-dimensional network.

Comment

1,2,4-Triazole (Wang et al., 1997) and related compounds exhibit interesting and useful biological activities (Eisa, 1990). The encouraging biological activities of these heterocycles prompted us to synthesize derivatives which may be suitable targets for antibiotic design. The title compound, (2), was synthesized by Michael reaction of (1) and acrylonitrile in the presence of triethylamine. It has been proved that the acidity of the NH group is stronger than that of the SH group on the ring of the triazole in the Michael reaction (Shi et al., 2004). When the 4-position is substituted by amino, the NH group is still the reaction position of the Michael reaction. The structure of compound (2) was confirmed by X-ray single-crystal diffraction analysis.

All the bond lengths and angles in (2) have normal values. The $\mathrm{N} 1 / \mathrm{C} 9 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 8$ ring and atom S 1 are approximately coplanar; the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9-\mathrm{S} 1$ torsion angle is $176.8(3)^{\circ}$. The bond length of $\mathrm{C} 9-\mathrm{S} 1[1.668$ (3) \AA] characterizes it as a $\mathrm{C}=\mathrm{S}$ double bond compared with the literature value for the length of a C-S single bond [1.731 (2) Å; Tripolt et al., 1993] and the length of a $\mathrm{C}=\mathrm{S}$ double bond connected to a triazole ring [1.669 (2) Å; Seccombe \& Kennard, 1973]. This suggests extensive conjugation of the $\mathrm{C}=\mathrm{S}$ bond with the triazole ring.

In the crystal structure of (2), the molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) involving the solvent water molecules and amino groups to form a three-dimensional network. In addition, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving $\mathrm{C} 7 /$ H7B and the C1-C6 benzene ring (centroid $C g$) are observed.

Experimental

To a well stirred solution of 4-amino-3-p-chlorophenyloxymethyl-5-mercapto-1,2,4-triazole, (1) (2.5 mmol), anhydrous ethanol (5 ml) and triethylamine (3 mmol) was added acrylonitrile (3 mmol), and the resulting solution was refluxed for 90 min (monitored by thinlayer chromatography). At the end of the reaction, the mixture was cooled to room temperature and neutralized, and the solvent was

Received 5 April 2006
Accepted 12 April 2006
removed in vacuo. The crude product was purified by column chromatography (silica gel, 20 g ; petroleum ether-trichloromethaneethanol $5: 2: 0.5$) to give compound (2) as white crystals. Colourless single crystals of (2) suitable for X-ray crystallographic analysis were obtained by recrystallization from ethyl acetate. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \delta$, p.p.m.) : 7.31-7.28 (d, H2, H4), 6.96-6.93 (d, H1, H5), 5.12 (s, $\mathrm{H} 7 A, \mathrm{H} 7 B), 4.82(s, b r, \mathrm{H} 4 A, \mathrm{H} 4 B), 4.52-4.47(t, \mathrm{H} 10 A, \mathrm{H} 10 B), 3.00-$ $2.96(t, \mathrm{H} 11 A, \mathrm{H} 11 B) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): 167.4, 155.0, 147.2, 129.6, 127.2, 116.4, 116.2, 59.5, 45.0, 16.5.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{OS} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=3227.79$
Tricilinic, $P \overline{1}$
$a=7.30(18) \AA$
$b=8.944(11) \AA$
$c=11.734(17) \AA$
$\alpha=90760(11)^{\circ}$
$\beta=9210(16)^{\circ}$
$\gamma=99.01(14)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.889, T_{\text {max }}=0.906$
3406 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.133$
$S=1.06$
2717 reflections
202 parameters
H atoms treated by a mixture of independent and constrained refinement
$V=757.5$ (2) \AA^{3}
$Z=2$
$D_{x}=1.437 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.30 \times 0.30 \times 0.25 \mathrm{~mm}$

2717 independent reflections 2231 reflections with $I>2 \sigma(I)$

$$
R_{\text {int }}=0.025
$$

$\theta_{\text {max }}=25.2^{\circ}$
3 standard reflections every 100 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.05 P)^{2}\right. \\
& \quad+0.99 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \AA^{-1} \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (2), with 30% probability displacement ellipsoids.

The water and amine H atoms were located in a difference map and they were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O}, \mathrm{N})$. C-bound H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

We are grateful to the National Natural Science Foundation of China for financial support (grant No. 0205B026).

References

Eisa, H. M. (1990). Sulfur Lett. 11, 13-14.
Enraf-Nonius. (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Seccombe, R. C. \& Kennard, C. H. L. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 4-8.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, H.-J., Li, Y.-Z. \& Hu, H.-W. (2004). Acta Cryst. E60, o1246-o1247.
Tripolt, R., Belaj, F. \& Nachbaur, E. (1993). Z. Naturforsch. Teil B, 48, 12121213.

Wang, Z. Y., Shi, H. J. \& Shi, H. X. (1997). Chin. J. Org. Chem. 17, 271273.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2{ }^{\text {i }}$	0.85 (5)	2.52 (5)	3.046 (7)	121 (4)
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 5^{\text {ii }}$	0.83 (5)	2.54 (5)	3.338 (5)	162 (5)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~S} 1^{\text {iii }}$	0.84 (4)	2.66 (4)	3.499 (4)	174 (4)
N4-H4B \cdots S 1	0.82 (4)	2.83 (4)	3.239 (3)	113 (3)
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 2^{\text {iv }}$	0.97	2.47	3.421 (5)	167
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{~N} 4^{\text {v }}$	0.97	2.59	3.550 (5)	172
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{Cg}^{\mathrm{vi}}$	0.97	2.70	3.486 (4)	139
$\begin{aligned} & \text { Symmetry codes: (i) } \\ & -x+1,-y+2,-z+1 ; \\ & -x,-y+2,-z+2 \end{aligned}$	$\begin{array}{llll}-x+1,-y+1,-z ; & \text { (ii) } \quad-x,-y+1,-z+1 ; & \text { (iii) } \\ \text { (iv) } \quad-x+1,-y+1,-z+1 ; & \text { (v) } \quad x, y-1, z ; & \text { (vi) }\end{array}$			

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ is the centroid of the benzene ring.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

